Examples for Data Access and Visualization

Prerequisites

To provide progressive streaming capability for large datasets, the data has been converted to OpenVisus IDX format.

Users can create a new Python environment and install the required libraries with the following steps:

Step 1: Create a new virtual enviroment using python

# Create a python virtual environment
python -m venv .venv
Step 2: Activate the environment you just created

# Activate the environment
source .venv/bin/activate
Step 3: Install required libraries

# Install required libraries
python -m pip install --verbose --no-cache --no-warn-script-location boto3 colorcet fsspec numpy imageio pympler==1.0.1 urllib3 pillow xarray xmltodict plotly requests scikit-image scipy seaborn tifffile pandas tqdm matplotlib zarr altair cartopy dash fastparquet lxml numexpr scikit-learn sqlalchemy  xlrd yfinance pyarrow pydeck netcdf4 nexpy nexusformat nbgitpuller intake ipysheet ipywidgets bokeh ipywidgets-bokeh panel pyvista trame trame-vtk trame-vuetify notebook "jupyterlab==3.6.6" jupyter_bokeh jupyter-server-proxy jupyterlab-system-monitor "pyviz_comms>=2.0.0,<3.0.0" "jupyterlab-pygments>=0.2.0,<0.3.0" 
Step 4: Install OpenVisus
 
# Install OpenVisus
python -m pip install OpenVisus
 

Conda Environment File

For convenience, here is a conda environment file you can use to create the environment. Save it as a environment.yml file and create the environment using conda env create -f environment.yml.
If you need more instructions on how to manage conda environments, please check the offical documentation here.


# environment.yml file
name: scivis2026
channels:
  - conda-forge
dependencies:
  - python=3.8
  - boto3
  - colorcet
  - fsspec
  - numpy
  - imageio
  - pympler=1.0.1
  - urllib3
  - pillow
  - xarray
  - xmltodict
  - plotly
  - requests
  - scipy
  - seaborn
  - tifffile
  - pandas
  - matplotlib
  - cartopy
  - fastparquet
  - lxml
  - numexpr
  - sqlalchemy
  - statsmodels
  - xlrd
  - intake
  - ipysheet
  - ipywidgets
  - bokeh
  - ipywidgets-bokeh
  - panel
  - notebook
  - jupyterlab=3.6.6
  - jupyter_bokeh
  - jupyter-server-proxy
  - jupyterlab-system-monitor
  - pyviz_comms>=2.0.0,<3.0.0
  - jupyterlab-pygments>=0.2.0,<0.3.0
  - OpenVisus